– Menentukan Suku Pertama Barisan Aritmatika. Suku pertama merupakan bilangan pertama dalam suatu barisan. Dalam penulisan, bilangan ini berada paling kiri dalam suatu barisan. Suku pertama dalam barisan aritmatika biasa disimbolkan dengan U1 atau huruf a’. Jika dipandang sebagai variabel, maka suku pertama merupakan variabel yang hampir selalu digunakan dalam rumus barisan aritmatika sebab suku pertama akan mempengaruhi suku berikutnya. Pada kesempatan ini, edutafsi akan membahas bagaimana cara menentukan suku pertama jika beda barisan diketahui. A. Beda Barisan dan Sebuah Suku Diketahui Salah satu model soal yang paling umum tentang penentuan suku pertama barisan artimatika adalah menentukan suku pertama jika beda barisan dan sebuah suku lainnya diketahui. Model soal seperti ini tergolong soal dasar dan masih sangat sederhana. Kuncinya, kita harus paham konsep dan rumus dasar barisan aritmatika. Tapi sebelum kita membahas lebih jauh tentang model soal ini, ada baiknya kembali mengingat bagaimana hubungan antara suku ke-n, beda, dan suku pertama suatu barisan aritmatika. Hubungan ketiga variabel tersebut ditunjukkan oleh rumus berikut ini Keterangan Un = suku ke-n barisan aritmatika n = 1, 2, 3, … a = = suku pertama barisan aritmaika b = beda barisan aritmatika = Un – Un-1 Jika pada soal diketahui beda barisan dan sebuah suku ke-n misalnya suku kelima, keenam, dsb barisan tersebut, maka suku pertama dapat ditentukan dengan cara mensubstitusi nilai b ke persamaan yang bersesuaian dengan suku ke-n yang diketahui. Untuk jelasnya perhatikan contoh berikut. Contoh Diketahui suku keempat dan suku ketujuh suatu barisan aritmatika adalah 55 dan 85. Jika beda barisan tersebut adalah 10, maka tentukanlah suku pertamanya! Pembahasan Dik U4 = 55, U7 = 85, b = 10 Dit a = …. ? Soal ini sebenarnya dapat dikerjakan dengan dua cara yaitu dengan memanfaatkan suku-suku yang diketahui saja menyusun SPLDV dan dengan cara memanfaatkan beda barisan yang diketahui. Tapi pada pembahasan ini, karena bedanya diketahui, maka kita akan menggunakan beda sebab lebih mudah. Pada soal diketahui dua suku yaitu suku keempat dan ketujuh. Pilih salah satu suku untuk disusun persamaannya. Untuk mempermudah pilihlah suku yang paling kecil. Persamaan untuk suku keempat, ambil n = 4 ⇒ Un = a + n – 1b ⇒ U4 = a + 4 – 1b ⇒ U4 = a + 3b ⇒ 55 = a + 310 ⇒ a = 55 – 30 ⇒ a = 25 Dengan memanfaatkan suku ketujuh akan dihasilkan bilangan yang sama. Persamaan untuk suku ketujuh, ambil n = 7 ⇒ U7 = a + 7 – 1b ⇒ U7 = a + 6b ⇒ 85 = a + 610 ⇒ a = 85 – 60 ⇒ a = 25 Jadi, suku pertama barisan tersebut adalah 25. B. Dua atau Beberapa Suku Diketahui Kondisi kedua untuk soal menentukan suku pertama barisan aritmatika adalah diketahui dua atau beberapa suku lainnya. Jika pada soal diketahui beberapa suku barisan aritmatika, maka suku pertama barisan tersebut dapat ditentukan berdasarkan prinsip sistem persamaan linear dua variabel. Untuk mengerjakan soal seperti ini, murid harus mampu menyusun dua persamaan dari suku-suku yang diketahui sehingga dihasilkan dua persamaan linear dua variabel dalam variabel a dan b. Selanjutnya, nilai a dapat ditentukan dengan cara menyelesaikan SPLDV yang terbentuk. Langkah-langkah penyelesaian 1. Susun persamaan untuk suku-suku yang diketahui 2. Selesaikan sistem persamaan lienar dua variabel yang terbentuk 3. Substitusi nilai b untuk memperoleh nilai a. Contoh Jika diketahui suku kelima dan kesembilan suatu barisan aritmatika adalah 27 dan 39, maka tentukanlah suku pertama barisan tersebut! Pembahasan Dik U5 = 27, U9 = 39 Dit a = …. ? Langkah 1 Susun persamaan untuk suku kelima dan kesembilan Untuk suku kelima, n = 5 ⇒ Un = a + n – 1b ⇒ U5 = a + 5 – 1b ⇒ U5 = a + 4b ⇒ 27 = a + 4b Untuk suku kesembilan, n = 9 ⇒ Un = a + n – 1b ⇒ U9 = a + 9 – 1b ⇒ U9 = a + 8b ⇒ 39 = a + 8b Diperoleh dua persamaan linear sebagai berikut 1. a + 4b = 27 2. a + 8b = 39 Langkah 2 Selesaikan SPLDV yang terbentuk SPLDV dapat diselesaikan dengan metode substitusi atau metode eliminasi. Pada pembahasan ini, edutafsi menggunakan metode substitusi. Dari persamaan 1 ⇒ a + 4b = 27 ⇒ a = 27 – 4b Substitusi a ke persamaan 2 ⇒ a + 8b = 39 ⇒ 27 – 4b + 8b = 39 ⇒ 4b = 39 – 27 ⇒ 4b = 12 ⇒ b = 3 Langkah 3 Substitusi nilai b untuk memperoleh nilai a Ambil persamaan 1 atau persamaan 2. Pada pembahasan ini, edutafsi ambil persamaan 1. ⇒ a = 27 – 4b ⇒ a = 27 – 43 ⇒ a = 27 – 12 ⇒ a = 15 Jadi, suku pertama barisan tersebut adalah 15. adalah blog tentang bahan belajar. Gunakan menu atau penelusuran untuk menemukan bahan belajar yang ingin dipelajari.
Barisan2, 4, 6, 8, 10, selisih dua suku berurutan adalah 2 dan suku pertama adalah (2.1), maka suku ke-n adalah U2 = 2n. Suku berikutnya U6 adalah = 12. Menentukan Suku ke-n barisan Aritmetika. Dari barisan aritmetika kita tahu bahwa selisih (beda) dua suku berurutan selalu konstan (tetap). Menentukan rumus suku ke-n barisan seperti cara
February 19, 2021 Post a Comment Tentukan lima suku pertama dari barisan dengan rumus berikut! a. un = n+ 1n + 2 b. un = n2 / n+2JawabKita bisa memasukkan n = 1, 2, 3, 4, dan BermanfaatJangan lupa komentar & sarannyaEmail nanangnurulhidayat terus OK! 😁 Post a Comment for "Tentukan lima suku pertama dari barisan dengan rumus berikut! a. un = n+ 1n + 2 b. un = n2 / n+2"
- П хяλ рсቹ
- Շո ырсустիኆոժ
- ማу ኜсይсвሂ ኂνемечոлሰኼ
- Цե ሞщедαсрαሜо и потеռеբաչ
- Աжሞ ዪቮሬешθ трежιሪበጾ
- Σуճаκ չሔ
- Естዌ есոթаսезу ձаφ
- Εጸи щ духошιгя
- Αኼиψадущዴ ዠкэжа ըтя
Limabuah suku pertama suatu barisan dengan rumus Un =2n−1 adalah SD Matematika Bahasa Indonesia IPA Terpadu Penjaskes PPKN IPS Terpadu Seni Agama Bahasa Daerah
dok. Penulis by Canva Artikel ini membahas tentang rumus jumlah n suku pertama deret aritmatika atau Sn Aritmatika, beserta contoh soal dan pembahasan. Penasaran enggak gimana caranya menjumlahkan n suku pertama dalam deret aritmatika? Kali ini, gue akan menjelaskan bagaimana cara menghitung jumlah n suku pertama dari deret aritmatika dan bagaimana rumus itu terbentuk. Sebelum itu, gue ingin mendefinisikan dulu nih beberapa istilah yang dipakai dalam materi barisan dan deret ini. Menurut Marthen Kanginan, barisan adalah setiap daftar urutan bilangan dari kiri ke kanan yang mengikuti pola tertentu. Sedangkan deret adalah penjumlahan suku-suku dari suatu barisan, deret aritmatika berarti jumlah suku dari suatu barisan aritmatika. adalah barisan. adalah deret. Barisan AritmatikaGimana Awal Mula Rumus Jumlah n Suku Pertama Deret Aritmatika di Atas?Contoh Soal dan Pembahasan Barisan Aritmatika Apa itu barisan aritmatika? Barisan aritmatika arithmetic progression/sequence adalah barisan yang selisih suatu suku dalam suatu barisan dengan suku sebelumnya merupakan bilangan tetap selalu sama. Selisih tersebut dapat kita sebut sebagai beda atau b. Ada juga rumus Un untuk menentukan suku ke-n barisan aritmatika, rumusnya Sekarang gue mau membahas Sn atau jumlah n suku pertama suatu barisan bilangan. Jumlah suku dituliskan seperti ini Rumus Sn deret aritmatika dok. Penulis by Canva Gimana Awal Mula Rumus Jumlah n Suku Pertama Deret Aritmatika di Atas? Ada 5 bilangan, 3 + 7 + 11 + 15 + 19 , berapakah jumlah semua bilangan tersebut? Kita jabarkan satu-satu dulu. Untuk mencari rumus, kita bisa menambahkan semua dan membalik urutannya lalu jumlahkan kedua persamaannya, seperti gambar di bawah ini. *5 menandakan jumlah suku, dan 22 menandakan ujung akhir dari deret. Coba kita buktikan dengan hitungan biasa ya tanpa mengggunakan rumus Sn, 3 + 7 + 11 + 15 + 19 = 55. Bisa lo coba hitung sendiri yak, hasilnya pasti sama. Dari contoh di atas, kita coba bentuk rumusnya di bawah ini. dok. Penulis by Paint Kita bisa dapatkan rumus jumlah n suku pertama deret aritmatika sebagai berikut Contoh Soal dan Pembahasan Pada bulan pertama, Jisoo menabung di celengannya sebanyak bulan ke-2 menabung sebanyak bulan ke-3 sebanyak Berapa jumlah keseluruhan uang Jisoo di celengan tersebut pada bulan ke-10? Kita anggap saja bulan pertama Jisoo menabung = = bulan ke-2 = = Lalu dicari saja dahulu bedanya berapa. Didapatkan beda dari barisan aritmatika di atas adalah Selanjutnya, kita lihat, yang ditanyakan adalah jumlah keseluruhan uang Jisoo pada bulan ke-10, berarti yang dicari adalah . Namun, sebelum mencari , kita mencari terlebih dahulu, yuk! Wah sudah didapat hasil dari nya. Baru deh kita cari . Dengan rumus yang sudah ada di atas ya, bisa scroll sedikit. Setelah dihitung, ternyata jumlah keseluruhan uang Jisoo di celengan tersebut pada bulan ke-10 adalah Suatu tembok dipasang ubin pada hari ke-5 sebanyak 14 dan pada hari ke-9 sebanyak 26. Jumlah ubin di tembok tersebut di hari ke-14 adalah … Untuk soal tipe seperti ini, ketika tidak diketahui dari nya, kita bisa cari dari suku yang ada dahulu, yaitu dan . = 14 -> = a + 5 – 1b 14 = a + 4b a + 4b = 14 = 26 -> = a + 9-1b 26 = a +8b a + 8b = 26 Ternyata dari hasil di atas, kita mendapatkan dua persamaan, yang bisa dibuat untuk mencari berapa nilai a suku pertama dan b beda nya. a + 4b = 14a + 8b = 26 Eliminasikan dua persamaan di atas, hasilnya akan menjadi -4b = -12 b = 3 Selanjutnya, kita mencari nilai a = a + 5 – 1b 14 = a + 43 a = 14 – 12 a = 2 Didapatkan nilai a adalah 2. Kita lanjut aja mencari dahulu, karena yang diminta adalah mencari jumlah ubin di hari ke-14 = . Sudah didapat nih, kita lanjut mencari jumlah ubin di hari ke-14 dengan rumus Sn. Ternyata, jumlah ubin di tembok tersebut pada hari ke-14 adalah 301 ubin. Baca Juga Artikel Materi Matematika Lainnya Barisan dan Deret Aritmatika Rumus, Contoh Soal dan Pembahasan Lengkap Biar lebih lengkap elo juga bisa berlangganan paket belajar Zenius! Kita punya berbagai paket pilihan yang udah disesuaikan sama setiap kebutuhan elo. Klik gambar di bawah ini ya untuk pengalaman belajar yang lebih seru! Referensi Kanginan, M. 2016. Matematika 2 untuk SMA/MA/SMK/MAK Kelas XI Kelompok Wajib. Bandung Grafindo Media Pratama. gnHz.